A Finite Element Method for Non-linear Hyperelasticity Applied for the Simulation of Octopus Arm Motions

نویسندگان

  • VASILEIOS VAVOURAKIS
  • ASIMINA KAZAKIDI
  • DIMITRIOS P. TSAKIRIS
  • JOHN A. EKATERINARIS
  • V. Vavourakis
  • A. Kazakidi
  • D. P. Tsakiris
  • J. A. Ekaterinaris
چکیده

Abstract. An implicit non-linear finite element (FE) numerical procedure for the simulation of biological muscular tissues is presented. The method has been developed for studying the motion of muscular hydrostats, such as squid and octopus arms and its general framework is applicable to other muscular tissues. The FE framework considered is suitable for the dynamic numerical simulations of three-dimensional non-linear nearly incompressible hyperelastic materials that undergo large displacements and deformations. Human and animal muscles, consisting of fibers and connective tissues, belong to this class of materials. The stress distribution inside the muscular FE model is considered as the superposition of stresses along the muscular fibers and the connective tissues. The stresses along the fibers are modeled as the sum of active and passive stresses, according to the muscular model of Van Leeuwen and Kier (1997) Philos. Trans. R. Soc. London, 352: 551-571. Passive stress distribution is an experimentally-defined function of fibers’ deformation; while active stress distribution is the product of an activation level time function, a force-stretch function and a force-stretch ratio function. The mechanical behavior of the surrounding tissues is determined adopting a Mooney-Rivlin constitutive model. The incompressibility criterion is met by enforcing large bulk modulus and by introducing modified deformation measures. Due to the non-linear nature of the problem,

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified Fixed Grid Finite Element Method in the Analysis of 2D Linear Elastic Problems

In this paper, a modification on the fixed grid finite element method is presented and used in the solution of 2D linear elastic problems. This method uses non-boundary-fitted meshes for the numerical solution of partial differential equations. Special techniques are required to apply boundary conditions on the intersection of domain boundaries and non-boundary-fitted elements. Hence, a new met...

متن کامل

Modified Fixed Grid Finite Element Method in the Analysis of 2D Linear Elastic Problems

In this paper, a modification on the fixed grid finite element method is presented and used in the solution of 2D linear elastic problems. This method uses non-boundary-fitted meshes for the numerical solution of partial differential equations. Special techniques are required to apply boundary conditions on the intersection of domain boundaries and non-boundary-fitted elements. Hence, a new met...

متن کامل

Computer Simulation of Equidxed Eutectic Solidifiction of Metals

In the present work, the solidification process was simulated in both macroscopic and microscopic scales. Two-dimensional heat transfer equation for conduction was applied for macroscopic modeling using enthalpy formulation and finite element method. In order to decrease execution time and/or memory capacity in finite analysis, skyline mathematical technique was adapted. The microenthalpy metho...

متن کامل

A two dimensional Simulation of crack propagation using Adaptive Finite Element Analysis

Finite element method (FEM) is one of the most famous methods which has many applications in varies studies such as the study of crack propagation in engineering structures. However, unless extremely fine meshes are employed, problem arises in accurately modelling the singular stress field in the singular element area around the crack tip. In the present study, the crack growth simulation has b...

متن کامل

Finite element simulation of pyroplastic deformation, anisotropic shrinkage and heterogeneous densification for ceramic materials during liquid phase sintering process

Pyroplastic deformation is a distortion of the ceramic shape during the sintering process. It occurs because the flow of the vitreous phase at high temperature and the applied stress due to the weight of the product during sintering process. The aim of this paper deals with describing a numerical-experimental method to evaluate the pyroplastic deformation, to predict the anisotropic shrinkage a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011